
Encryption at Rest in ZFS

Tom Caputi
tcaputi@datto.com

Overview of Encryption
Implementation

2

What is Encryption?

3

• Want to prevent someone (an attacker) from accessing private data

• Permissions aren’t good enough
• Root user can always access every file
• Kernel bugs can result in privilege escalation
• Disks can always be moved to another machine / OS and read

• Solution: Encryption
• Data on disk should look pseudorandom (no detectable patterns)
• User has a secret key that can be used to access the data
• Mathematically, data is extremely hard to decrypt

Problems with Non-Native Encryption

4

• File Level Encryption (eg. ecryptfs)
• Encryption before compression -> no compression
• No dedup capabilities (within dataset)
• Writes a metadata header, can disturb file alignment or waste space

• Disk Level Encryption (eg. dm-crypt)
• Multiple copies are encrypted multiple times
• Keys must always be loaded or pool is useless

• No scrub, resilver, etc
• No possibility of doing zfs send without keys loaded

• Complex management

How is this important to Datto?

5

• Our primary backup solution for our partners
• A backup agent runs on our client’s machines
• Backups are sent to our device on the client’s network
• Backups are replicated to servers in the cloud (zfs send)

• Advantages of Native Encryption
• Higher performance encryption, without losing compression
• Much cleaner implementation than current stacked block devices
• Ability to backup customer data without liability

What is Encrypted?

6

Encrypted

• File data and metadata
• ACLs, names, permissions, attrs

• Directory listings
• All Zvol data
• FUID Mappings
• Master encryption keys
• All of the above in the L2ARC
• All of the above in the ZIL

Not Encrypted

• Dataset / snapshot names
• Dataset properties
• Pool layout
• ZFS Structure
• Dedup tables
• Everything in RAM

7

• ZFS Encryption Commands
• zfs create -o encryption=<enc> -o keysource=<ks>
• zfs key -l <dataset> : Loads a user’s key into zfs for use
• zfs key -u <dataset> : Unloads a user’s key from the system
• zfs key -c <dataset> : Changes a user’s key
• zfs mount, zfs umount, zpool import, zpool export

• When key is loaded datasets are mountable (fs) / openable (zvol)
• Child datasets inherit encryption algorithm and keysource by default
• Key / key source changeable without re-encrypting dataset

Keystore API

Encryption Administration

8

• Algorithms
• AES-CCM, AES-GCM
• 128 bit, 192 bit, 256 bit
• encryption=on defaults to AES-CCM-256 bit

• Key Sources
• File, prompt
• Raw, hex, passphrase
• Variable PBKDF2 iterations (more later)

• Properties
• encryption, keysource, keystatus, pbkdf2iters

Caveats of Native ZFS Encryption

9

• Limited to copies=2
• Dedup tables are not encrypted

• Dedup will leak data about equivalent data blocks
• Dedup will only work within “clone families”

• Encryption + compression could allow for a CRIME attack
• Not relevant to most applications
• Can be prevented with compression=off

Data Encryption in ZFS
From the Ground Up

1
0

Encryption Scope

11

• File Level Encryption
• Store encryption parameters as file metadata
• How to encrypt large files without rewriting for every update?
• What happens if the file metadata is corrupted / lost?

• Block Level Encryption
• Encrypt each block separately
• Store the encryption parameters in blkptr_t
• Limits the scope to a single block

• Encryption, decryption, data loss

Types of Encryption

12

• Asymmetric encryption
• Public / private keypair
• Slow
• Good for verifying identity of communicating parties
• Examples: SSH handshake, TLS handshake

• Symmetric encryption
• Single key for encryption / decryption
• Fast (AES-NI instruction set on Intel x86_64, almost 1000x faster)
• Examples: TLS (post handshake), dm-crypt, etc.

Symmetric Encryption: Block Cipher

13

AES

Plaindata block

Encryption Key
Cipherdata block

• Block Cipher
• Used to transform individual blocks of plaintext
• AES is the current standard (built into Intel x86_64)
• Works on a fixed block (AES is 128 bits)

On-Disk
RAM Only
Procedure

Symmetric Encryption: Stream Cipher

14

AES-ECB

Plaindata

Encryption Key
Cipherdata

• Block CIpher Mode of Operation
• Allows encryption of arbitrary lengths of plaindata
• Successively applies AES to each block in the plaindata
• Mode is called Electronic Cookbook (ECB)

On-Disk
RAM Only
Procedure

ECB Encryption Problem

15

Confidential Stream Cipher

16

• Confidential Block Cipher Modes
• Initialization Vector (IV) acts as salt for the first block
• Blocks after the first are used to “salt” the next block

AES + mode

Plaindata

Encryption Key Cipherdata

IV

On-Disk
RAM Only
Procedure

Initialization Vectors (IV)

17

• Used as a salt for the encryption algorithm
• Prevents equivalent plaintext blocks -> equivalent ciphertext blocks

• When used with a proper mode

• Different modes have different IV requirements
• GCM and CCM require:

• Up to 104 bits (13 bytes), 96 bits recommended by NIST
• Reusing an IV + key results in CATASTROPHIC FAILURE

Authenticated Encryption

18

• Authenticated Encryption (AE or AEAD)
• Encryption also produces a Message Authentication Code (MAC)
• MAC is a checksum that requires a secret key to produce
• Prevents an attacker from filling the ciphertext with garbage undetected

AES + mode

Plaindata

Encryption Key
Cipherdata

IV
MAC

On-Disk
RAM Only
Procedure

Key Rotation

19

• Hash-Based Key Derivation Function (HKDF)
• Generates an encryption key from a master key + salt
• Relatively inexpensive to calculate
• Prevents Master key from getting stale due to IV collisions, algorithm limits

HKDF
Salt

Master Key
Encryption Key

On-Disk
RAM Only
Procedure

Key Rotation + Cache

20

• Salt + Encryption Key Cache
• Current key doesn’t go stale for a while
• Cache the current one for faster encryption
• Doesn’t help decrypting older data

HKDF

Salt

Master Key

Encryption KeySalt Cache

On-Disk
RAM Only
Procedure

Encryption + Key Rotation

21

Encrypt

Plaindata

Enc Key
Cipherdata

IV
MAC

HKDF
Master Key

Salt

Salt
Cache

On-Disk
RAM Only
Procedure

Generating the IV and Salt

22

Encrypt

Plaindata

Enc Key
Cipherdata

IV
MAC

HKDF

Master
Key

Salt

Salt
Cache

PRNG

• Pseudo Random Number Generator (PRNG)
• 96 bit IV + 64 bit salt = 160 bits of entropy
• 1 / 1 billion chance of collision after 5.406e+19 blocks
• 41141552 years at 1 million blocks per second

On-Disk
RAM Only
Procedure

Encryption Parameters: blkptr_t

23

• Salt (64 bits)
• MAC (128 bits)

• Occupies ½ of checksum
• Serves similar purpose to checksum
• Normal checksum allows for scrubbing

• IV (96 bits)
• Would use too much of padding
• Disadvantages to deriving from other fields

• zbookmark_phys_t
• DVA[0] + birth txg + salt

• Limits copies=2

DVA[0]

DVA[1]

DVA[2] / IV

properties

padding

physical birth txg
birth txg

fill count / salt

checksum / checksum + MAC

Dedup Encryption Parameters: Concept

24

• In order for dedup to work, MAC + checksum must match
• IV + salt must match for equivalent data
• Normally, reusing the IV + key results in CATASTROPHIC FAILURE
• We will only use the same IV + key when data is equivalent as well

• In this case we have simply duplicated what we had before
• Leaks the info that the blocks are the same
• Dedup leaks this info anyway

Dedup Encryption Parameters: HMAC

25

• Hash-Based Message Authentication Code
• Similar to MAC, generated without producing ciphertext
• HMAC key stored alongside the master key
• 64 bits to salt, 96 bits to IV

HMAC
(procedure)

HMAC Key

Plaindata
HMAC

Salt

IV

On-Disk
RAM Only
Procedure

Dedup vs Non-Dedup Encryption

26

On-Disk
RAM Only
Procedure

Encrypt
Plaindata

Enc Key
Cipherdata

IV
MAC

HKDF
Master Key

Salt
Salt

Cache
HMACHMAC

HMAC Key

Encrypt

Plaindata

Enc Key
Cipherdata

IV
MAC

HKDF
Master Key

Salt
Salt

Cache
PRNG

Non-Dedup

Dedup

Allowing the User to Change the Key

27

• Wrapping Key
• Provided by the user
• Used to encrypt the randomly generated master key
• Master key never exposed to the user

EncryptMaster / HMAC
Keys

Wrapping Key
Encrypted

HMAC / Master
Keys

IV MAC
PRNG

User

On-Disk
RAM Only
Procedure

Passphrase Based Keys

28

• Passphrase Based Key Derivation Function (PBKDF2)
• Passphrases are variable length, low entropy
• Turns passphrase into a high entropy key
• CPU Intensive to calculate to prevent brute force attacks

PBKDF2Iterations

Salt

Wrapping Key

Passphrase

PRNG

User

On-Disk
RAM Only
Procedure

Additional Topics

2
9

Additional Topics: ZIL Encryption

30

• ZIL blocks are preallocated
• Must pre-assign salt / IV
• Must store MAC in ZIL header (since bp will not be rewritten)

• ZIL blocks need to be claimable without loaded keys
• Leave ZIL structure metadata unencrypted
• zil_chain_t, lr_common_t, blkptr_t from TX_WRITE
• Data blocks from TX_WRITE can be encrypted normally

• ZIL blocks are rewritten for every log record
• Real IV = generated IV + zc_nused from zil_chain_t

Additional Topics: L2ARC Encryption

31

• Goals / Challenges
• No extra data stored in L2ARC header
• Data encrypted in the L2ARC, decrypted but compressed in L1ARC
• L2ARC read code verifies against blkptr_t’s checksum

• Implementation
• Store data on disk as it exists in the pool
• New L1ARC header (normal L1 header + encryption params)
• Encryption parameters move with the header until buffer is written out
• On read, decryption params provided by caller’s blkptr_t

Additional Topics: Raw Sends

32

• Ability to replicate a dataset without having the keys loaded
• Just send the data as it exists on disk

• Also need to send the IV / MAC
• Very similar concept to recently merged compressed send feature

• ZFS can be a true platform for end-to-end encryption
• Backups to untrusted servers is possible
• Admin can always replicate data

• Coming soon….

Current Status

33

• Fully implemented (except for raw sends)
• Ready for review
• Pull requests are out for Linux, OSX, Illumos

• Primary PR is on Linux

• Special Thanks
• Jorgen Lundman for maintaining the ports to OSX and Illumos
• Matt Ahrens and Brian Behlendorf for all the help answering my questions
• George Wilson and Dan Kimmel for helping me through the ARC changes

Questions?
Tom Caputi
tcaputi@datto.com
https://github.com/zfsonlinux/zfs/pull/4329

Appendix: Keystore

3
5

DSL Directory (Current, Simplified)

36

• DSL Directory
• A dataset and all snapshots
• Pointers to properties object, linked list of snapshots, child map

DSL Directory

DSL Dataset
(Head)

DSL Dataset
(Snapshot)

DSL Dataset
(Snapshot)

Properties
ZAP

On-Disk
RAM Only
Procedure

DSL Crypto Key

37

• DSL Crypto Key
• ZAP
• One per DSL Directory (snapshots share)
• Holds Encrypted Master / HMAC Keys, wrapping IV + MAC

DSL Directory

DSL Dataset
(Head)

DSL Dataset
(Snapshot)

DSL Dataset
(Snapshot)

Properties
ZAP

DSL Crypto
Key

On-Disk
RAM Only
Procedure

New Encryption Properties

38

• New Encryption Properties
• Encryption algorithm
• Key source
• PBKDF2 params: salt, iterations

DSL Directory

DSL Dataset
(Head)

DSL Dataset
(Snapshot)

DSL Dataset
(Snapshot)

Properties
ZAP

DSL Crypto
Key

On-Disk
RAM Only
Procedure

In-Core Keystore

39

• SPA Keystore
• Wrapping Key will work for DSL Directory and all children
• All snapshots within a DSL Directory will share a DSL Crypto Key
• All three structs maintained in AVL trees added to the SPA

Wrapping Key

DSL Crypto
Key

DSL Crypto
Key

Key Mapping

Key Mapping

Key Mapping

Key Mapping

On-Disk
RAM Only
Procedure

In-Core Keystore: Wrapping Keys

40

• Wrapping Keys
• Provided by the user
• Managed with zfs key command
• Keys are unloadable when refcount is zero

On-Disk
RAM Only
Procedure

Wrapping Key

DSL Crypto
Key

DSL Crypto
Key

Key Mapping

Key Mapping

Key Mapping

Key Mapping

In-Core Keystore: DSL Crypto Keys

41

• DSL Crypto Keys
• Holds Master / HMAC keys, salt cache
• Immediately evicted when refcount is zero

On-Disk
RAM Only
Procedure

Wrapping Key

DSL Crypto
Key

DSL Crypto
Key

Key Mapping

Key Mapping

Key Mapping

Key Mapping

In-Core Keystore: Key Mappings

42

• Key Mappings
• Created when dataset is owned (with a few exceptions)
• Loads the DSL Crypto Key from disk on creation (if it isn’t already)
• Simply allows ZIO layer to lookup DSL Crypto Keys via the Dataset ID

On-Disk
RAM Only
Procedure

Wrapping Key

DSL Crypto
Key

DSL Crypto
Key

Key Mapping

Key Mapping

Key Mapping

Key Mapping

