datto

Encryption at Rest In ZFS

Tom Caputi
tcaputi@datto.com

Overview of Encryption
Implementation

What is Encryption?

- Want to prevent someone (an attacker) from accessing private data

- Permissions aren’t good enough
- Root user can always access every file
- Kernel bugs can result in privilege escalation
- Disks can always be moved to another machine / OS and read

. Solution: Encryption
- Data on disk should look pseudorandom (no detectable patterns)
.- User has a secret key that can be used to access the data
- Mathematically, data is extremely hard to decrypt

Problems with Non-Native Encryption

- File Level Encryption (eg. ecryptfs)
- Encryption before compression -> no compression
- No dedup capabillities (within dataset)
- Writes a metadata header, can disturb file alignment or waste space
- Disk Level Encryption (eg. dm-crypt)
- Multiple copies are encrypted multiple times
- Keys must always be loaded or pool is useless
- No scrub, resilver, etc
- No possiblility of doing zfs send without keys loaded

- Complex management

How is this important to Datto?

- Our primary backup solution for our partners
- A backup agent runs on our client's machines
- Backups are sent to our device on the client’'s network
- Backups are replicated to servers in the cloud (zfs send)

- Advantages of Native Encryption
- Higher performance encryption, without losing compression
- Much cleaner implementation than current stacked block devices
. Abllity to backup customer data without liability

What is Encrypted?

Encrypted Not Encrypted

- File data and metadata - Dataset / snapshot names
- ACLs, names, permissions, attrs - Dataset properties

- Directory listings - Pool layout

. All Zvol data - ZFS Structure

- FUID Mappings - Dedup tables

- Master encryption keys - Everything in RAM

. All of the above in the L2ZARC
. All of the above In the ZIL

Keystore AP|

- ZFS Encryption Commands

e« 7Ifs create

—

—

—

N N N [N

LS
LS
LS

key

key

key
fs moun

-1
—-U
—-C

—

-0 encryption=<enc> -0 keysource=<ks>
. Loads a user’s key into zfs for use

<da-

LadSE]

<da-

C >

LadSE]

C>

<dataset>
zfs umoun

. Unloads a user’s key from the system

. Changes a user’s key

—

Zpool 1mpor

—

ZPOool expor

- When key is loaded datasets are mountable (fs) / openable (zvol)
. Child datasets inherit encryption algorithm and keysource by default
- Key / key source changeable without re-encrypting dataset

Encryption Administration

- Algorithms

. AES-CCM, AES-GCM
. 128 bit, 192 bit, 256 bit
- encryption=on defaults to AES-CCM-256 bit

- Key Sources
- File, prompt

- Raw, hex, passphrase
- Variable PBKDF2 iterations (more later)

- Properties
- encryption,

keysource,

keystatus,

~21ters

pbkd:

Caveats of Native ZFS Encryption

- Limited to copies=2

. Dedup tables are not encrypted
- Dedup will leak data about equivalent data blocks
- Dedup will only work within “clone families”

- Encryption + compression could allow for a CRIME attack
- Not relevant to most applications
- Can be prevented with compression=off

Data Encryption in ZFS

From the Ground Up

datto

Encryption Scope

- File Level Encryption
. Store encryption parameters as file metadata
- How to encrypt large files without rewriting for every update?
- What happens if the file metadata is corrupted / lost?

- Block Level Encryption
- Encrypt each block separately
- Store the encryption parameters in blkptr t
- Limits the scope to a single block
- Encryption, decryption, data loss

Types of Encryption

- Asymmetric encryption
. Public / private keypair
. Slow
. Good for verifying identity of communicating parties
- Examples: SSH handshake, TLS handshake

- Symmetric encryption

- Single key for encryption / decryption
- Fast (AES-NI instruction set on Intel x86_64, almost 1000x faster)

- Examples: TLS (post handshake), dm-crypt, etc.

Symmetric Encryption: Block Cipher = on-Disk

B RAM Only
B Procedure

Plaindata block mmm.a

Encryption Key s

AES mmmma Clpherdata block

- Block Cipher
. Used to transform individual blocks of plaintext
- AES is the current standard (built into Intel x86 64)
. Works on a fixed block (AES is 128 bits)

datto 13

Symmetric Encryption: Stream Cipher = on-Disk

B RAM Only
B Procedure

Plaindata

AES-ECB emmmma Cipherdata

Encryption Key

- Block Clpher Mode of Operation
- Allows encryption of arbitrary lengths of plaindata
. Successively applies AES to each block in the plaindata

- Mode is called Electronic Cookbook (ECB)

datto »

ECB Encryption Problem

Original image Encrypted using ECB mode Modes other than ECB result in
pseudo-randomness

Confidential Stream Cipher 5 on Disk

B RAM Only
B Procedure

Plaindata s

Encryption KeY pmmmeg AES + Mmode pmmma Cipherdata

— .

- Confidential Block Cipher Modes
- Initialization Vector (IV) acts as salt for the first block
- Blocks after the first are used to “salt” the next block

datto 16

\', "~ § Py -y " N\ N
N

NN N L 3
AR SR

Initialization Vectors (1V)

Original image Encrypted using ECB mode Modes other than ECB result in
pseudo-randomness

. Used as a salt for the encryption algorithm

- Prevents equivalent plaintext blocks -> equivalent ciphertext blocks
- When used with a proper mode

. Different modes have different |V requirements
- GCM and CCM require:
. Up to 104 bits (13 bytes), 96 bits recommended by NIST
- Reusing an IV + key results in CATASTROPHIC FAILURE

Authenticated Encryption % on Disk

B RAM Only
B Procedure

Plaindata s

mmmma Cipherdata
Encryption Key pmmmeg AES + mode

— .
-

- Authenticated Encryption (AE or AEAD)
- Encryption also produces a Message Authentication Code (MAC)
- MAC Is a checksum that requires a secret key to produce
- Prevents an attacker from filling the ciphertext with garbage undetected

datto 18

Key Rotation 2 On-Disk

B RAM Only
B Procedure

Master Key mum
HKDF mmmma ENCryption Key

Salt S —

- Hash-Based Key Derivation Function (HKDF)
- Generates an encryption key from a master key + salt
- Relatively inexpensive to calculate
- Prevents Master key from getting stale due to |V collisions, algorithm limits

= |
I__é_q?\-o 3 iy, men Lo _f_cﬂ'_:t
UaltitO 19

Key Rotation + Cache = on-Disk

B RAM Only
B Procedure

o .

Master Key mumme

HKDF geg Salt Cache gmmg ENncryption Key

. Salt + Encryption Key Cache
. Current key doesn’t go stale for a while
. Cache the current one for faster encryption
- Doesn't help decrypting older data

aatto 20

Encryption + Key Rotation = OnDisk

B RAM Only
B Procedure

Plaindata

Master Key Cipherdata

Salt

datto 21

Generating the IV and Salt = OnDisk

B RAM Only
B Procedure

Master Plaindata s
Key Salt mea Cipherdata
—> Enc Key s Encrypt
Cache
v M >

- Pseudo Random Number Generator (PRNG)
- 96 bit IV + 64 bit salt = 160 bits of entropy
- 1/ 1 billion chance of collision after 5.406e+19 blocks
- 41141552 years at 1 million blocks per second

datto 22

Encryption Parameters: blkptr t

- Salt (64 bis
oo v,
. Occupies 2 of checksum
. Serves similar purpose to checksum

- Normal checksum allows for scrubbing
. IV (96 bits)
» Would use too much of padding
- Disadvantages to deriving from other fields
+ zbookmark phys t
. DVA[O] + birth txg + salt checksum / checksum + MAC

. Limits copies=2

datto %

Dedup Encryption Parameters: Concept

- In order for dedup to work, MAC + checksum must match
- |V + salt must match for equivalent data
- Normally, reusing the |V + key results in CATASTROPHIC FAILURE
- We will only use the same IV + key when data is equivalent as well
- In this case we have simply duplicated what we had before
- Leaks the info that the blocks are the same
. Dedup leaks this info anyway

Dedup Encryption Parameters: HMAC = on Disk

B RAM Only
B Procedure

Plaindata e MAG
procecure
HMAC Key

- Hash-Based Message Authentication Code
- Similar to MAC, generated without producing ciphertext
- HMAC key stored alongside the master key
. 64 bits to salt, 96 bits to IV

|

datto 25

Dedup vs Non-Dedup Encryption = on-Disk

B RAM Only
B Procedure

Master Key s Cipherdata
Salt E "
—> Cach g ENnc Key g2 2 ENCIYP

-

Plaindata Master Key Salt == = Cipherdata
—> Coche BEgl ENC KeY g Encrypt
> =

= o HMAC
:M . >

datto 26

Non-Dedup

Dedup

Allowing the User to Change the Key = On.Disk

B RAM Only
B Procedure

User gma Wrapping Key e
Encrypted

Master / HMAC e o« HMAC / Master
Keys

—> Keys Encrypt

PRNG

—>_—>

- Wrapping Key
- Provided by the user
. Used to encrypt the randomly generated master key
- Master key never exposed to the user

datto 27

Passphrase Based Keys = on-Disk

B RAM Only
B Procedure

PBKDF2 ommea Wrapping Key

mmmmg PASSphrase e e

- Passphrase Based Key Derivation Function (PBKDF2)
- Passphrases are variable length, low entropy
. Turns passphrase into a high entropy key
- CPU Intensive to calculate to prevent brute force attacks

E B
AattTo
4 | - B |]
- LWy Ty W : 2 8

Additional Topics

Aaditional Topics: ZIL Encryption

- ZIL blocks are preallocated
» Must pre-assign salt / IV
. Must store MAC in ZIL header (since bp will not be rewritten)

- ZIL blocks need to be claimable without loaded keys
- Leave ZIL structure metadata unencrypted

+ z1i1 chain t, lr common t, blkptr t from TX WRI

. Data blocks from TX WRITE can be encrypted normally

- ZIL blocks are rewritten for every log record
- Real IV = generated IV + zc nusedfrom zil chain t

<]

Additional Topics: L2ZARC Encryption

- Goals / Challenges
- No extra data stored in L2ZARC header
. Data encrypted in the L2ZARC, decrypted but compressed in L1ARC
- L2ARC read code verifies against blkptr t's checksum

- Implementation
. Store data on disk as it exists in the pool
- New L1ARC header (normal L1 header + encryption params)
- Encryption parameters move with the header until buffer is written out
- On read, decryption params provided by caller's blkptr t

Additional Topics: Raw Sends

- Abillity to replicate a dataset without having the keys loaded
. Just send the data as it exists on disk

. Also need to send the IV / MAC

- Very similar concept to recently merged compressed send feature
. /ZFS can be a true platform for end-to-end encryption

- Backups to untrusted servers Is possible

- Admin can always replicate data
- Coming soon....

Current Status

. Fully implemented (except for raw sends)

- Ready for review

. Pull requests are out for Linux, OSX, lllumos
- Primary PR is on Linux

- Special Thanks
- Jorgen Lundman for maintaining the ports to OSX and lllumos
- Matt Ahrens and Brian Behlendorf for all the help answering my questions
. George Wilson and Dan Kimmel for helping me through the ARC changes

datto

Questions?

Tom Caputi
tcaputi@datto.com
https://github.com/zfsonlinux/zfs/pull/4329

Appendix: Keystore

DSL Directory (Current, Simplitied) = on.Disk

B RAM Only
. Properties
e _)

B Procedure

DSL Dataset
(Head)

DSL Dataset
(Snapshot)

DSL Dataset

> (Snapshot)

—> —>

- DSL Directory
. A dataset and all snapshots
. Pointers to properties object, linked list of snapshots, child map

datto 36

DSL Crypto Key 5 on Disk

B RAM Only
DSL Crypto . Properties

B Procedure
DSL Dataset > DSL Dataset > DSL Dataset

(Head) (Snapshot) (Snapshot)

—>

- DSL Crypto Key
- ZAP
.+ One per DSL Directory (snapshots share)

- Holds Encrypted Master / HMAC Keys, wrapping |V + MAC

datto 37

New Encryption Properties = OnDisk

B RAM Only
DSL Crypto . E Properties

B Procedure

DSL Dataset
(Head)

DSL Dataset
(Snapshot)

DSL Dataset

> (Snapshot)

—> —>

- New Encryption Properties
. Encryption algorithm
- Key source
- PBKDF2 params: salt, iterations

datto 38

In-Core Keystore = On-Disk

B RAM Only
B Procedure

DSL Crypto mmmm €Y Mapping

Key nammm Key Mapping
Wrapping Key

<

DSL Crypto pummm K€Y Mapping
Key pamme Key Mapping

- SPA Keystore
- Wrapping Key will work for DSL Directory and all children

. All snapshots within a DSL Directory will share a DSL Crypto Key
. All three structs maintained in AVL trees added to the SPA

datto 39

In-Core Keystore: Wrapping Keys = on.Dist

B RAM Only
B Procedure

DSL Crypto mmmm €Y Mapping

Key e Key Mapping
Wrapping Key

<

DSL Crypto pummm K€Y Mapping
Key pwme Key Mapping

- Wrapping Keys
- Provided by the user
- Managed with zfs key command
- Keys are unloadable when refcount is zero

datto 40

In-Core Keystore: DSL Crypto Keys

DSL Crypto mmmm €Y Mapping

Key > aame Key Mapping
Wrapping Key

DSL Crypto pemmm K€Y Mapping
Key pamme Key Mapping

<

- DSL Crypto Keys
- Holds Master / HMAC keys, salt cache
- Immediately evicted when refcount is zero

~ On-Disk
B RAM Only
B Procedure

datto

41

In-Core Keystore: Key Mappings = On.Dist

B RAM Only
B Procedure

DSL Crypto mmmm €Y Mapping

Key e Key Mapping
Wrapping Key

DSL Crypto pemmmm K€Y Mapping
Key e Key Mapping

- Key Mappings
- Created when dataset is owned (with a few exceptions)
- Loads the DSL Crypto Key from disk on creation (if it isn’t already)
- Simply allows ZIO layer to lookup DSL Crypto Keys via the Dataset ID

datto 42

